3.7.16 \(\int \frac {d+e x}{a+b (d+e x)^2+c (d+e x)^4} \, dx\) [616]

Optimal. Leaf size=43 \[ -\frac {\tanh ^{-1}\left (\frac {b+2 c (d+e x)^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c} e} \]

[Out]

-arctanh((b+2*c*(e*x+d)^2)/(-4*a*c+b^2)^(1/2))/e/(-4*a*c+b^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1156, 1121, 632, 212} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {b+2 c (d+e x)^2}{\sqrt {b^2-4 a c}}\right )}{e \sqrt {b^2-4 a c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/(a + b*(d + e*x)^2 + c*(d + e*x)^4),x]

[Out]

-(ArcTanh[(b + 2*c*(d + e*x)^2)/Sqrt[b^2 - 4*a*c]]/(Sqrt[b^2 - 4*a*c]*e))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1121

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1156

Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m),
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]

Rubi steps

\begin {align*} \int \frac {d+e x}{a+b (d+e x)^2+c (d+e x)^4} \, dx &=\frac {\text {Subst}\left (\int \frac {x}{a+b x^2+c x^4} \, dx,x,d+e x\right )}{e}\\ &=\frac {\text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,(d+e x)^2\right )}{2 e}\\ &=-\frac {\text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c (d+e x)^2\right )}{e}\\ &=-\frac {\tanh ^{-1}\left (\frac {b+2 c (d+e x)^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c} e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 46, normalized size = 1.07 \begin {gather*} \frac {\tan ^{-1}\left (\frac {b+2 c (d+e x)^2}{\sqrt {-b^2+4 a c}}\right )}{\sqrt {-b^2+4 a c} e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/(a + b*(d + e*x)^2 + c*(d + e*x)^4),x]

[Out]

ArcTan[(b + 2*c*(d + e*x)^2)/Sqrt[-b^2 + 4*a*c]]/(Sqrt[-b^2 + 4*a*c]*e)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.04, size = 129, normalized size = 3.00

method result size
default \(\frac {\munderset {\textit {\_R} =\RootOf \left (e^{4} c \,\textit {\_Z}^{4}+4 d \,e^{3} c \,\textit {\_Z}^{3}+\left (6 d^{2} e^{2} c +e^{2} b \right ) \textit {\_Z}^{2}+\left (4 d^{3} e c +2 d e b \right ) \textit {\_Z} +d^{4} c +d^{2} b +a \right )}{\sum }\frac {\left (\textit {\_R} e +d \right ) \ln \left (x -\textit {\_R} \right )}{2 e^{3} c \,\textit {\_R}^{3}+6 d \,e^{2} c \,\textit {\_R}^{2}+6 c \,d^{2} e \textit {\_R} +2 c \,d^{3}+e b \textit {\_R} +b d}}{2 e}\) \(129\)
risch \(-\frac {\ln \left (\left (\sqrt {-4 a c +b^{2}}\, e^{2}-e^{2} b \right ) x^{2}+\left (2 d e \sqrt {-4 a c +b^{2}}-2 d e b \right ) x +\sqrt {-4 a c +b^{2}}\, d^{2}-d^{2} b -2 a \right )}{2 \sqrt {-4 a c +b^{2}}\, e}+\frac {\ln \left (\left (\sqrt {-4 a c +b^{2}}\, e^{2}+e^{2} b \right ) x^{2}+\left (2 d e \sqrt {-4 a c +b^{2}}+2 d e b \right ) x +\sqrt {-4 a c +b^{2}}\, d^{2}+d^{2} b +2 a \right )}{2 \sqrt {-4 a c +b^{2}}\, e}\) \(174\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(a+b*(e*x+d)^2+c*(e*x+d)^4),x,method=_RETURNVERBOSE)

[Out]

1/2/e*sum((_R*e+d)/(2*_R^3*c*e^3+6*_R^2*c*d*e^2+6*_R*c*d^2*e+2*c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(e^4*c*_Z^4
+4*d*e^3*c*_Z^3+(6*c*d^2*e^2+b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+d^4*c+d^2*b+a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a+b*(e*x+d)^2+c*(e*x+d)^4),x, algorithm="maxima")

[Out]

integrate((x*e + d)/((x*e + d)^4*c + (x*e + d)^2*b + a), x)

________________________________________________________________________________________

Fricas [A]
time = 0.34, size = 266, normalized size = 6.19 \begin {gather*} \left [\frac {e^{\left (-1\right )} \log \left (\frac {2 \, c^{2} x^{4} e^{4} + 8 \, c^{2} d x^{3} e^{3} + 2 \, c^{2} d^{4} + 2 \, b c d^{2} + 2 \, {\left (6 \, c^{2} d^{2} + b c\right )} x^{2} e^{2} + 4 \, {\left (2 \, c^{2} d^{3} + b c d\right )} x e + b^{2} - 2 \, a c - {\left (2 \, c x^{2} e^{2} + 4 \, c d x e + 2 \, c d^{2} + b\right )} \sqrt {b^{2} - 4 \, a c}}{c x^{4} e^{4} + 4 \, c d x^{3} e^{3} + c d^{4} + {\left (6 \, c d^{2} + b\right )} x^{2} e^{2} + b d^{2} + 2 \, {\left (2 \, c d^{3} + b d\right )} x e + a}\right )}{2 \, \sqrt {b^{2} - 4 \, a c}}, -\frac {\sqrt {-b^{2} + 4 \, a c} \arctan \left (-\frac {{\left (2 \, c x^{2} e^{2} + 4 \, c d x e + 2 \, c d^{2} + b\right )} \sqrt {-b^{2} + 4 \, a c}}{b^{2} - 4 \, a c}\right ) e^{\left (-1\right )}}{b^{2} - 4 \, a c}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a+b*(e*x+d)^2+c*(e*x+d)^4),x, algorithm="fricas")

[Out]

[1/2*e^(-1)*log((2*c^2*x^4*e^4 + 8*c^2*d*x^3*e^3 + 2*c^2*d^4 + 2*b*c*d^2 + 2*(6*c^2*d^2 + b*c)*x^2*e^2 + 4*(2*
c^2*d^3 + b*c*d)*x*e + b^2 - 2*a*c - (2*c*x^2*e^2 + 4*c*d*x*e + 2*c*d^2 + b)*sqrt(b^2 - 4*a*c))/(c*x^4*e^4 + 4
*c*d*x^3*e^3 + c*d^4 + (6*c*d^2 + b)*x^2*e^2 + b*d^2 + 2*(2*c*d^3 + b*d)*x*e + a))/sqrt(b^2 - 4*a*c), -sqrt(-b
^2 + 4*a*c)*arctan(-(2*c*x^2*e^2 + 4*c*d*x*e + 2*c*d^2 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c))*e^(-1)/(b^2 - 4*
a*c)]

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 168 vs. \(2 (39) = 78\).
time = 0.56, size = 168, normalized size = 3.91 \begin {gather*} - \frac {\sqrt {- \frac {1}{4 a c - b^{2}}} \log {\left (\frac {2 d x}{e} + x^{2} + \frac {- 4 a c \sqrt {- \frac {1}{4 a c - b^{2}}} + b^{2} \sqrt {- \frac {1}{4 a c - b^{2}}} + b + 2 c d^{2}}{2 c e^{2}} \right )}}{2 e} + \frac {\sqrt {- \frac {1}{4 a c - b^{2}}} \log {\left (\frac {2 d x}{e} + x^{2} + \frac {4 a c \sqrt {- \frac {1}{4 a c - b^{2}}} - b^{2} \sqrt {- \frac {1}{4 a c - b^{2}}} + b + 2 c d^{2}}{2 c e^{2}} \right )}}{2 e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a+b*(e*x+d)**2+c*(e*x+d)**4),x)

[Out]

-sqrt(-1/(4*a*c - b**2))*log(2*d*x/e + x**2 + (-4*a*c*sqrt(-1/(4*a*c - b**2)) + b**2*sqrt(-1/(4*a*c - b**2)) +
 b + 2*c*d**2)/(2*c*e**2))/(2*e) + sqrt(-1/(4*a*c - b**2))*log(2*d*x/e + x**2 + (4*a*c*sqrt(-1/(4*a*c - b**2))
 - b**2*sqrt(-1/(4*a*c - b**2)) + b + 2*c*d**2)/(2*c*e**2))/(2*e)

________________________________________________________________________________________

Giac [A]
time = 4.50, size = 53, normalized size = 1.23 \begin {gather*} \frac {\arctan \left (\frac {2 \, c d^{2} + 2 \, {\left (x^{2} e + 2 \, d x\right )} c e + b}{\sqrt {-b^{2} + 4 \, a c}}\right ) e^{\left (-1\right )}}{\sqrt {-b^{2} + 4 \, a c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a+b*(e*x+d)^2+c*(e*x+d)^4),x, algorithm="giac")

[Out]

arctan((2*c*d^2 + 2*(x^2*e + 2*d*x)*c*e + b)/sqrt(-b^2 + 4*a*c))*e^(-1)/sqrt(-b^2 + 4*a*c)

________________________________________________________________________________________

Mupad [B]
time = 0.09, size = 61, normalized size = 1.42 \begin {gather*} \frac {\mathrm {atan}\left (\frac {2\,a\,c\,d^2+4\,a\,c\,d\,e\,x+2\,a\,c\,e^2\,x^2+a\,b}{a\,\sqrt {4\,a\,c-b^2}}\right )}{e\,\sqrt {4\,a\,c-b^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)/(a + b*(d + e*x)^2 + c*(d + e*x)^4),x)

[Out]

atan((a*b + 2*a*c*d^2 + 2*a*c*e^2*x^2 + 4*a*c*d*e*x)/(a*(4*a*c - b^2)^(1/2)))/(e*(4*a*c - b^2)^(1/2))

________________________________________________________________________________________